Changing the Game in Nuclear Energy

Presented to

San Diego American Nuclear Society

GENERAL ATOMICS

[=]

ТМ

by Bob Schleicher Senior Scientist

July 23, 2014

World Energy Requirements Present Major Challenges and Large Opportunities

Global Energy Consumption EIA and Harvard Projections

Nuclear can be a major clean-energy factor in supporting this growth

World's Uranium and Thorium Have almost 300 Times More Energy than all Proven Oil Reserves

Aging U.S. Nuclear and Coal Plants Will Be Retired Over Next 30 Years

The US Could Have a Potential Shortfall of 55% in Electricity Supply

DOE EIA 2014 Annual Energy Outlook

2014 Levelized Cost of Electricity (for plants entering service in 2018)

EM² is the Power Source for the 21st Century and Beyond

LWRs are the workhorse for the nuclear industry, but

can 60-year old technology meet the huge world energy demand in 21st century and beyond?

Problems

- Uranium LWRs require large natural U resources for ²³⁵U enrichment
- Efficiency Low electric output to fuel energy consumed (~33%)
- Waste Low fuel utilization/efficiency result in high waste production
- Water lack of abundant cooling water inhibits nuclear power siting
- High Cost LWRs cannot compete with fossil fuels in most countries

New Technologies Are Key to Assuring Nuclear Power's Place in Meeting Future World Energy Demands

- Convert-and-burn core physics
- Silicon carbide composite structures 7
- Advanced fuels
- High temperature systems

- Asynchronous, high-speed generators
- Non-aqueous spent fuel recycling

EM² is a Convert-and-Burn Fast Reactor

Four-module EM² plant

- 1,060 MWe for evaporative cooling
- 960 MWe for dry-cooling
- 9 hectares

Major specifications

- 30-yr core life no reshuffling
- 850°C He-cooled fast reactor
- 53% net efficiency combined Brayton/ Rankine cycle
- 42-month construction time 4 modules
- 60-yr passive fuel storage
- Burns LEU, DU, Thorium, spent LWR fuel
- Passively safe, licensable by U.S. NRC

Plant Process Arrangement (Values apply to evaporatively cooled plant)

Reactor Building Physical Arrangement With Below-Grade, Seismically Isolated Containments

Reduced Capital Cost: Use Building Block Module Pair to Reduce Construction Time to 42 Months

EM² module pair

Seismic isolation

AP1000 reactor auxiliary building (China installation) same size as entire EM² module pair

Primary Coolant System Arrangement

High Efficiency: High Temperature + Combined Brayton/Organic Rankine Cycle

* Based on U.S. geographical and seasonal mean temps

Reactor Elevation and Core Cross-Section

EM² Has Low Excess Reactivity and a Large Negative Reactivity Coefficient

	EM ²	GFR	SFR
Reactor power (MWth)	500	600	1523
Fuel type	UC	(U,Pu)C	U-TRU-10%Zr
Cycle length	32 yrs	2.1 yrs	1.5 yrs
Burnup reactivity swing (% Δ k)	2.1	1.5	0.06
Doppler coefficient (pcm/K)	-12.9/-8.6	-2.2/-1.8	-1.5/-0.9
Void reactivity (pcm)	106/210	169/205	2618/2659

EM² Fuel is Designed to Meet the Challenge of a 30-Year Burn

💠 GENERAL ATOMICS

GA Has Established a State-of-the-Art Fuel Fabrication Laboratory

Sol-gel column

Gel particles with carbon

Sintering

UC kernels

SiC coater

SiC composite fuel cladding

Sintered pellets

Prototypes have been fabricated and samples prepared for irradiation

EM² Closes the Fuel Cycle to Not Only Reduce Waste, But Consume Waste

Discharge Waste Comparison: 1.1 GWe LWR vs. EM²

LWR discharge waste is primarily actinides; EM² discharge is fission products

Engineered Safety Features DRACS

1000

Fission Product Vent System Is an Engineered Safety Feature That Protects Fuel and Removes Volatile Fission Products

The Best Safety Feature for EM² is Distance

- 1) LWR sites are limited due to need for water cooling.
- 2) EM² has substantially more siting opportunities due to dry-cooling ability

Site Requirement	4 x EM ²	ALWR
Power, MWe	1060	1117
Minimum land area, acres	50	500
Minimum cooling water makeup, gpm	negligible	200,000
Max distance to rail, mi	N/A	20
Safe shutdown earthquake acceleration, g	0.5	0.3

Green = no siting challenges Yellow = 1 siting challenge Orange = 2 siting challenges Blue = 3 or more siting challenges

60% of U.S. is available for siting an EM² plant; only 13% is available to LWRS

Updated Application of Spatial Data Modeling and Geographical Information Systems (GIS) fo Identification of Potential Siting Options for Small Modular Reactors, ORNL TM-2012/403, Sept, 2012

Operations and Maintenance Fuel Handling and Storage

Spent fuel is transported laterally to storage area

Fuel removal

Voloxidation (AIROX): Dry-Gas Extraction Is a Proliferation Resistant Method of Recycling Spent Fuel

Archimedes: A Proliferation Resistant Method to Addressing Spent Fuel

LWR spent fuel, initial 3.7%, 45MWD/MT, 10 Years

- Separates fission products from actinides (avoids difficult chemistry)
- Not capable of TRU separation by element or isotopes (non-proliferation)
- Supportive of new reprocessing-free closed fuel cycle options

Archimedes

Major Factors Affecting the Cost of Nuclear Power Economics

Tornado chart for \pm 10% variation from base

Mean of Net Present Value

EM² Levelized Power Cost vs Cost of Capital

