

International Perspectives on Nuclear Power

San Diego Section of the American Nuclear Society

John E. Kelly Deputy Assistant Secretary for Nuclear Reactor Technologies Office of Nuclear Energy U.S. Department of Energy

September 4, 2014

Atoms for Peace The First Wave of Nuclear Power Deployment

Nuclear Energy

~ President Dwight D. Eisenhower, December 8, 1953, to the 470th Plenary Meeting of the United Nations General Assembly

"Peaceful power from atomic energy is no dream of the future. That capability, already proved, is here — now today."

Drivers that Influenced the First Wave of Nuclear Power Deployment

Nuclear Energy

Encouraging drivers

- Post World War II: Re-emerging economies required increased energy
- 1970s Oil Crisis
- Strong Government Backing

Discouraging drivers

- High Interest Rates
- Fear of Radiation
- Fear of Nuclear Weapons
- Three Mile Island Accident
- Chernobyl Accident
- Waste Management Impasse

Neutral drivers

- Acid Rain
- Air Pollution
- 1971- Inadvertent Climate Modification. Report of the Study of Man's Impact on Climate

Existing Nuclear Commercial Power Reactors (13.8% World Wide / 21.4% OECD)

Nuclear Energy Plays an Important Role in US Energy Supply

Nuclear Energy

Nuclear power is a clean, reliable base load energy source

- Provides 19% of U.S. electricity generation mix
- Provides 61% of U.S. emission-free electricity
- Avoids about 700 MMTCO2 each year
- Helps reduces overall NOx and SOx levels

U.S. electricity demand projected to increase ~28% by 2040 from 2011 levels

100 GWe nuclear capacity - 100 operating plants

- Fleet maintaining close to 90% average capacity factors
- Most expected to apply for license renewal for 60 years of operation
- Some plants may be vulnerable to premature closure

Net Non-Carbon Emitting Sources of Electricity, 2012

U.S. Nuclear Power Plants in Operation

Public Support Increases

Nuclear Energy

Figure 1. Percent Who Favor and Oppose Nuclear Energy: 1983 to 2013

"Overall, do you strongly favor, somewhat favor, somewhat oppose, or strongly oppose the use of nuclear energy as one of the ways to provide electricity in the United States?"

Nuclear Energy Institute-commissioned national public opinion surveys from 1983 to 2013

U.S. Public See Vital Role for Nuclear Energy

Nuclear Energy

Nuclear Energy Institute Survey

- National survey of public opinion conducted March 2014
- Positive Findings
 - 74% believe nuclear energy will play an important role in meeting the country's future electricity needs, and half believe this importance will increase with time
 - 63% favor the use of nuclear energy as one of the ways to provide electricity in the United States
 - 70% agree that nuclear power plants operating in the United States are safe and secure
 - 82% of respondents favor renewing operating licenses for nuclear power plants that continue to meet federal safety standards
- Misconceptions
 - 25% believe nuclear energy releases no greenhouse gas
 - 28% associate nuclear energy with "climate change solution"

10-Year Trend of U.S. Nuclear Plant Costs (2012 \$ per MWh)

Nuclear Energy

Source: Electric Utility Cost Group (EUCG)

Year	Fuel	Capital	Operating	Total
2002	5.57	3.76	18.58	27.91
2003	5.47	5.02	20.27	30.75
2004	5.10	6.12	19.56	30.78
2005	4.89	6.56	20.27	31.73
2006	4.81	6.42	20.71	31.94
2007	4.98	6.34	20.31	31.62
2008	5.24	7.27	20.78	33.29
2009	5.89	10.58	22.46	38.92
2010	6.67	10.53	22.49	39.69
2011	7.01	11.50	23.34	41.85
2012	7.35	12.96	23.86	44.17

Step Changes: Post-Davis Besse vessel head replacements (esp. 2003), license upgrades and power uprates

Baseload Power Generation Issues

Nuclear Energy

Findings from recent American Consumer Institute Center for Citizen Research seminar

- Capacity Markets are broken
 - Grid operators are increasing reliance on intermittent sources of energy
 - Investment in baseload generation discouraged
- Energy markets are distorted
 - Wholesale electricity prices are low and subsidies for other clean sources have further suppressed prices
 - Larger renewable penetration with limited transmission capability will further distort the market

Today, International Interest in New Nuclear Power is Strong

Nuclear Energy

Energy security

- Nuclear shelters countries from import of costly fossil fuels
- Replacing retired nuclear or coal generation plants

Economic incentives

• Nations rich in fossil fuel would prefer to export those fuels and use nuclear for domestic electricity production

Environmental protection

• Replacing coal with nuclear can alleviate air pollution problems

Climate change concerns

- Nuclear is the "Emission-free" base load generation technology
- Dry condenser cooling possible with SMRs when water usage is restricted

Global Nuclear Construction Plans

- 436 nuclear reactors operating in 30 countries (373 GWe capacity)
- 71 reactors currently under construction in 15 countries (28 in China)
- 172 reactors planned in 26 countries over next 8-10 years
- 309 reactors proposed in 35 countries over next 15 years

China is Driving the Nuclear Renaissance

Nuclear Energy

Most of China's electricity is produced from fossil fuels

- 2014 data shows 80% coal, 2% oil, 1% gas, 15% hydropower & 2% nuclear
- China has 21 nuclear power reactors in operation, 28 under construction, and more about to start construction

Additional reactors are planned to increase nuclear capacity

- Goal is for 58 GWe by 2020, 150 GWe by 2030, and much more by 2050
- China is largely self-sufficient in reactor design and construction, and other aspects of the fuel cycle, but is making full use of western technology to adapt and improve
- China will complete Gen II reactors already under construction, but any new reactors will be at least Gen III

Countries with Commercial Reactors Considering New Builds

Country/ market	Reactors (Under construction and planned)	GDP (2013 est) Billions US\$ (PPP)	Grid (installed capacity, 2011)	Earliest Deployment (Operational)	Note
China	88	\$13,390	1,100 GWe	Ongoing	Construction
India	28	\$ 4,990	237 GWe	Ongoing	Construction
Czech	2	\$ 286	20 GWe	2026	Discussion
Brazil	1+	\$ 2,416	119 GWe	2015+	Construction
Argentina	1	\$ 771	33 GWe	2018	Construction
U.K.	4+	\$ 2,387	93 GWe	2018+	Contracts
Bulgaria	1	\$ 105	10 GWe	2023	Discussion
U.S.	5+	\$16,720	1,052 GWe	2016	Construction
Lithuania	1	\$ 67	3.6 GWe	2020+	Contracts

Countries Planning or Considering Initiating Commercial Nuclear Energy (examples)

Country/ market	Reactors (Under construction and planned)	GDP (2013 est) Billions US\$ (PPP)	Grid (installed capacity, 2011)	Deployment Target (Operational)	Note
UAE	4+	\$ 270	26.1 GWe	2017	Construction
Vietnam	4+	\$ 359	22.0 GWe	2023	Contracts
Turkey	4+	\$1.167	53.9 GWe	2021	Contracts
Jordan	1	\$ 40	3.4 GWe	2021	Contracts
Bangladesh	2	\$ 325	6.4 GWe	2020	Contracts
Poland	6 <u>+</u>	\$ 814	34.3 GWe	2025	Target
Kenya	TBD	\$ 80	1.8 GWe	TGD	Target
Malaysia	TBD	\$ 525	28.4 GWe	2021+	Discussion
Morocco	TBD	\$ 180	6.4 GWe	TBD	Discussion
Nigeria	TBD	\$ 479	5.9 GWe	2025 <u>+</u>	Target
Egypt	2+	\$ 550	27.8 GWe	2025 <u>+</u>	Tender planned
Saudi Arabia	16 <u>+</u>	\$ 928	51.2 GWe	2022	Tender planned
Namibia	TBD	\$ 18	0.4 GWe	TBD	Discussion
Indonesia	TBD	\$1,285	41.0 GWe	TBD	Discussion

Status of New Builds in U.S.

Nuclear Energy

- Gen III+ designs are a major evolutionary step in large reactor technology
- First new reactors being built in U.S. in 30 years

Nuclear construction

- Watts Bar 2015
- Vogtle late 2017
- V.C. Summer 2018 2020

Challenges of nuclear deployment

- High capital cost
- Lower electricity demand
- Low natural gas prices
- Post Fukushima safety concerns
- Waste Management

Construction of Vogtle Unit 3, August 2014 ©Georgia Power Company

SCE&G Places First Ring on V.C. Summer Unit 2 Containment Vessel, June 2014 ©SCE&G

AP1000 Construction Worldwide

Nuclear Energy

Sanmen – May 2014 Source: SNPTC

VC Summer – June 2014 Source: SCE&G

Haiyang — May 2014 Source: State Nuclear Power Engineering Feng Qingyi Wang Jinjie.

Vogtle – July 2014 Source: Georgia Power Co.

Secretary Moniz Announces \$6.5 Billion Vogtle Loan Guarantee

Nuclear Energy

"The construction of new nuclear power facilities like this one - which will provide carbon-free electricity to well over a million American energy consumers - is not only a major milestone in the Administration's commitment to jumpstart the U.S. nuclear power industry, it is also an important part of our all-of-the-above approach to American energy as we move toward a low-carbon energy future...

The innovative technology used in this project represents a new generation of nuclear power with advanced safety features and demonstrates renewed leadership from the U.S. nuclear energy industry."

CA20 module inside Vogtle Unit 3 nuclear island August 2014 ©Georgia Power Company

SMRs can be Game Changers

Nuclear Energy

Secretary Moniz addresses the Intermountain Energy Summit, August 20, 2014

"Small Modular Reactors represent a new generation of safe, reliable, lowcarbon nuclear energy technology and provide a strong opportunity for America to lead this emerging global industry."

"We are committed to fostering the safe and secure contribution of nuclear power to the global energy mix."

~ IAEA International Conference on Nuclear Security – July 1, 2013

SMR Technologies are of Great Interest

Nuclear Energy

Safety benefits

- Passive decay heat removal by natural circulation
- Simplified design eliminates/mitigates several postulated accidents
- Below grade reactor sites
- Potential for reduction in Emergency Planning Zone

Economic benefits

- Reduced financial risk
- Flexibility to add units
- Right size for replacement of old coal and other plants
- Frees up hydrocarbons for export or reduce need for fuel imports
- Job and skill creation

mPower and NuScale have been selected for the Department of Energy \$452M SMR Licensing Technical Support Program

Status of SMR Licensing Technical Support Program

Nuclear Energy

B&W mPower

- Cooperative Agreement established with team consisting of B&W, Bechtel, and TVA in April 2013
- Initial DOE commitment of \$101 M through March 2014
- DOE is working with B&W to establish a path forward for the mPower project

NuScale Power

- Selection of NuScale announced on December 12, 2013
- Cooperative Agreement signed May 27, 2014
- DOE to fund up to \$217 M for NuScale SMR development
- DCA submittal currently planned for 2nd half of 2016

SMRs are being Developed Globally

Nuclear Energy

Russia

- KLT-40S is a 35 MWe barge mounted PWR Available for commercial deployment
- Other SMR designs: VBER-150/300, VK-300, ABV & SVBR-100 (lead-bismuth variant)

Korea

- SMART is a 90-100 MWe PWR
 - Plan to begin operation of a Demonstration plant in 2017
 - Would be used for electricity and/or non-electric applications such as desalination

China

- ACP100 is a 100 MWe PWR
 - Plan to begin construction of a 2 module plant in 2015
 - Would be used for electricity, heat or desalination
- HTR-PM is a High Temperature Gas-Cooled Reactor
 - First nuclear concrete December 2012

Argentina

- CAREM-25 is a 27 MWe PWR
 - Plan to complete construction of a prototype in 2017
 - Would be used for electricity, desalination or as a research reactor
 - Full scale 200 MWe CAREM reactor to follow in early 2020's

~ How a power plant based on the CAREM reactor could look courtesy of Invap

Generation IV International Forum

Generation IV Reactor Concepts

Nuclear Energy

Gas Cooled Fast Reactor

Molten Salt Cooled Reactor

Freeze

Gen IV Nuclear Construction in China

Nuclear Energy

Operation of Chinese Experimental Fast Reactor (20 MWe Test Reactor)

Startup in 2010 – 2011, Fully operational in 2014

Design of Chinese Prototype Fast Reactor

Construction of demonstration High Temperature Gas Reactor

- 210 MWe Plant which consists of twin 250 MWt Pebble Bed HTR-PMs
- Basemat pour completed March 29, 2014
- Scheduled to start electricity generation by the end of 2017

Design of a small Fluoride Salt Cooled Reactor

CEFR Finished

The construction site of the first HTR-PM at Shidaowan (Image: CNEC)

China's HTR-PM, Shidao Bay-1

Gen IV Nuclear Construction in Russia

Nuclear Energy

Completion of BN-800 Reactor

- First criticality date June 27, 2014
- Design of BN-1200 Gen IV SFR
 - Competitive economics to LWRs

Design of MBIR test reactor to replace BOR-60

Demonstration project on lead-bismuth LFR

Beloyarsk-4 July 2014

Assembling a reactor in the 'clean area' of the BN-800 power unit at the Beloyarskaya NPP (RIA Novosti / Pavel Lisitsyn)

Refuel floor during the recent first-time fueling of BN-800 (Rosatom)

Summary

Nuclear Energy

Strong international interest

- Energy
- Climate & Environment
- Economic

Current construction

- China is leading the nuclear renaissance
- USA is making good progress in new builds

SMRs can be game changers

Generation IV deployment is longer term

"Investing in clean energy <u>isn't</u> a decision that limits our economic potential; it's an opportunity to lead the global clean technology markets that are forming right now."

~ Secretary Moniz at National Press Club, February 1, 2014